Stackable

Demos

illustration shape

Demos​

favicon

Possible uses of the Stackable Data Platform

The following data stack application examples demonstrate how easily and flexibly the Stackable Data Platform can be used for very different use cases. All demos deliberately focus on one topic at a time and:

  • use stackablectl to install 
  • can be set up 1:1 on your environment
  • demonstrate contexts step by step 
  • are available as open source code in Github

Demo: end-to-end-security​

Integrated Data Security​

This technology demo showcases some of Stackable’s latest features, focusing on end-to-end security:

It shows how single sign-on works across the platform and how impersonation allows for separation of access to the underlying data. It also demonstrates advanced use cases such as row-level security and data masking for critical data.

The demo uses a data lakehouse schema extract of TPC-DS, a decision support benchmark, illustrating the platform’s robust analytics capabilities.

Technologically, elements of previous demos are included, such as:

  • HDFS w/ Iceberg: The Hadoop Distributed File System, used for scalable and reliable storage of large volumes of data. Configured to use Apache Iceberg as table format.
  • Hive: A data warehouse infrastructure built on top of Hadoop, allowing for data summarization, querying, and analysis.
  • Trino: A fast distributed SQL engine for interactive analytics. It provides powerful SQL querying capabilities over large datasets.
  • Open Policy Agent (OPA): A general-purpose policy engine that provides fine-grained control and unified policy enforcement across various Stackable data apps.
  • Superset: A modern data exploration and visualization platform, enabling intuitive data insights.
  • Spark: A unified analytics engine for large-scale data processing, used here to perform data engineering, data science, and machine learning.

Additionally, the demo shows new security components:

  • Kerberos: A network authentication protocol designed to provide strong authentication for client-server applications using secret-key cryptography, now running on Kubernetes for secure authentication.
 
  • Rego rules: The policy language for OPA, allowing the creation of complex policy decisions for fine-grained access control.
 
  • OpenID Connect (OIDC): A simple identity layer on top of the OAuth 2.0 protocol, allowing clients to verify the identity of users and obtain their profile information securely.
 
  • Keycloak: in addition to the Stackable Data Platform – an open-source identity and access management solution. It handles user authentication, authorization, and provides single sign-on (SSO) across various applications.

The result is a powerful and secure template created for the fictitious “knab” organization for a modern data stack with the Stackable Data Platform.

HOW-TO start,

within a Kubernetes-Cluster:

stackablectl demo install end-to-end-security

Demo: data-lakehouse-iceberg-trino-spark​

Data Lakehouse technology showcase

This technology demo showcases some of Stackable’s latest features.

The demo contains elements of previous demos i.e.

  • real-time event streaming with Apache NiFi
  • Trino for SQL access and
  • visual data display and analysis with Apache Superset
Lakehouse overview

But, adding to this, the demo also includes new lakehouse features such as the integration with Apache Iceberg providing e.g. transactional consistency and full schema evolution.

The result is a powerful blueprint for a modern data stack with the Stackable Data Platform.

Other highlights of the demo:

  • Apache Spark: A multi-language engine for executing data engineering, data science, and machine learning. This demo uses it to stream data from Kafka into the lakehouse.
 
  • Open policy agent (OPA): An open source, general-purpose policy engine that unifies policy enforcement across the stack. This demo uses it as the authorizer for Trino, which decides which user is able to query which data.

HOW-TO start,

within a Kubernetes-Cluster:

stackablectl demo install data-lakehouse-iceberg-trino-spark

(note: tested on 10x4core nodes with each 20GB RAM and 30GB HDD, persistent volumes with a total size of approximately 1TB)

Note: if you are looking for a smaller setup, please take a look at our trino-iceberg demo:

stackablectl demo install trino-iceberg

Demo: SPARK-K8S-ANOMALY-DETECTION-TAXI-DATA

Machine Learning for outlier detection

This Stackable Data Platform demo is an extension of the original TRINO-TAXI-DATA demo with Apache Spark™.

Superset anomaly scores

An often neglected factor when using data for machine learning is data quality. False measurements, missing values and the like distort the subsequent prediction quality. In certain scenarios, spikes, outliers, or other anomalies in the data are also relevant, in that they can form a basis for defining alerts.

Thus, the detection of outliers makes an important contribution to the successful use of data. Nowadays, science and industry use a variety of procedures and methods for this purpose.

In this demo, outlier detection is exemplified using Apache Spark by running an isolation forest algorithm on the data. The isolation forest algorithm is used for unsupervised model training, which means that the model does not require labeling.

Results of the detection are stored in Apache Iceberg format and visualized using Apache Superset.

HOW-TO start,

within a Kubernetes-Cluster:

stackablectl demo install spark-k8s-anomaly-detection-taxi-data

Demo: NIFI-kafka-druid-water-level-data

Real-time display of water levels

Low water or danger of flooding – the water levels of our rivers have moved into the public interest in times of climate change.

Our Stackable Data Platform demo shows the water levels of rivers in near real-time for Germany based on data from Pegel Online.

Illustration of a map of Real-time display of water levels

Several components of the Stackable Data Platform play together without requiring much configuration effort:

Apache Nifi and Kafka are used to fetch water level measurements from gauging stations distributed across Germany via an API from Pegel Online and store them in Apache Druid.

Druid is a scalable real-time database that can be queried using SQL. This method is used in the demo to query gauge levels via Apache Superset and visualize them in the dashboard. For permanent storage, Druid requires a so-called “deep storage”, which is implemented in our example via MinIO as an S3-compatible object store, as it is available in most public and private cloud environments.

HOW-TO start,

within a Kubernetes-Cluster:


stackablectl demo install nifi-kafka-druid-water-level-data

Demo: trino-taxi-data

Analysis with a data lake

This Stackable Data Platform demo shows data stored in S3 for analysis up to display in the dashboard.
Trino taxi data

 

Our Stackable operators are used to configure and roll out various components. In particular, this example shows how role-based data access can be implemented using the Open Policy Agent:

  • MinIO, an S3-compatible object store, persistently stores the data for this demo.
  • Hive-Metastore stores the metadata necessary to make the sample data accessible via SQL and is used by Trino in our example.
  • Trino is our extremely fast, distributed SQL query engine for Big Data analytics that can be used to explore data spaces and that we use in the demo to provide SQL access to the data.
  • Finally, Apache Superset we use to retrieve data from Trino via SQL queries and build dashboards on that data.
  • Open Policy Agent (OPA): an open source, universal policy engine that unifies policy enforcement across the stack. In this demo, OPA authorizes which user can query which data.

HOW-TO start,

within a Kubernetes-Cluster:

stackablectl demo install trino-taxi-data

Demo: NIFI-kafka-druid-earthquake-data

Event streaming of earthquake data

This Stackable Data Platform demo shows streamed earthquake data end-to-end up to the dashboard.
kafka druid earthquake data DB

 

It includes the following operators:

  • Apache Superset: a modern platform for data exploration and visualization. This demo uses Superset to retrieve data from Druid via SQL queries and build dashboards on that data.
  • Apache Kafka®: A distributed event streaming platform for high-performance data pipelines, streaming analytics, and data integration. In this demo, Kafka is used as an event streaming platform to stream data in near real-time.
  • Apache Nifi: An easy-to-use, powerful system to process and distribute data. This demos uses it to fetch earthquake-data from the internet and ingest it into Kafka.

  • Apache Druid: A real-time database to support modern analytics applications. This demo uses Druid to ingest and store data in near real-time from Kafka and provide access to the data via SQL.
  • MinIO: An S3-compatible object store. In this demo, it is used as persistent storage for Druid to store all streamed data.

HOW-TO start,

within a Kubernetes-Cluster:


stackablectl demo install nifi-kafka-druid-earthquake-data

You have questions or remarks?

Need more Info?

Contact Sönke Liebau to get in touch with us:

Sönke Liebau

Sönke Liebau

CPO & CO-FOUNDER of Stackable

Subscribe to our Newsletter

With the Stackable newsletter you’ll always be up to date when it comes to updates around Stackable!
illustration of an envelope entering a mail box
An illustration of a laptop and phone on a desk

Newsletter

Subscribe to the newsletter

With the Stackable newsletter you’ll always be up to date when it comes to updates around Stackable!