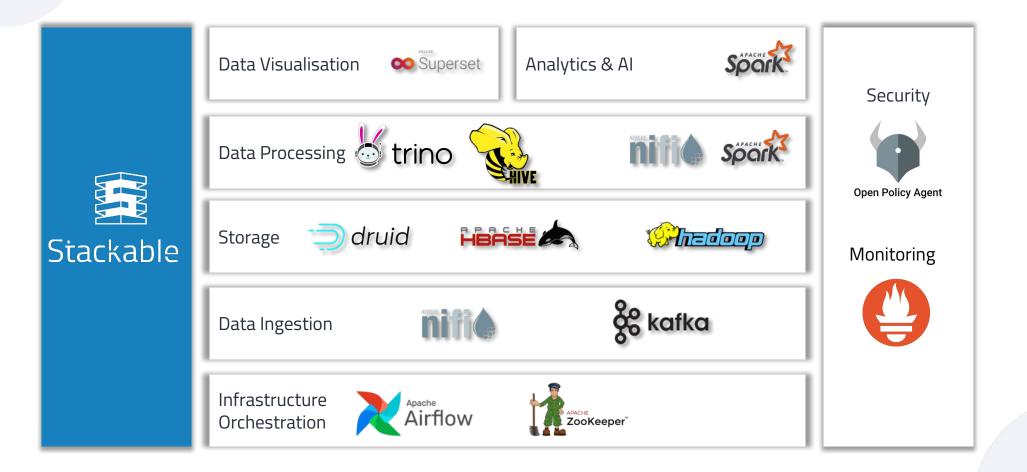
Stackable

Office Hours 2022-12-02



Stackable in a Nutshell

Founded	Stackable Data Platform	Our Customers
2020	> Open Source	Danske Bank TabOla
Open Core	Infrastructure as Code	Dentsply Sirona
😥 b.telligent	Cloud native (Kubernetes)	
I O N O S by 📧	On-Premises, Cloud, Hybrid	IONOS opencorporates
Our Team: ~20	Our Services	Network - Collaborations
International in	Product Support	
Germany & Europe	Big Data Consulting	OSB ^{Open Source} ALLIANCE bitkom eco
	Trainings	

Stackable

Your free alternative Open-Source Data Platform

Stackable Stackable

Homepage 2.0 Stackable

Automate how your business hangles data with Stack fole

The modern oper source data platfor

FOR DECISIC JAKERS	FOR DEVELOPERS		المالم	
DOCUMENTATION				
100% ope	n source 😭 Infra	astructure as code	Dat	ta sovereignty

Contact

Tech

Blog

Company

Jobs

....

111 • •

....

111 • • 111 • •

11.0.0

....

 English

Q

Request Demo

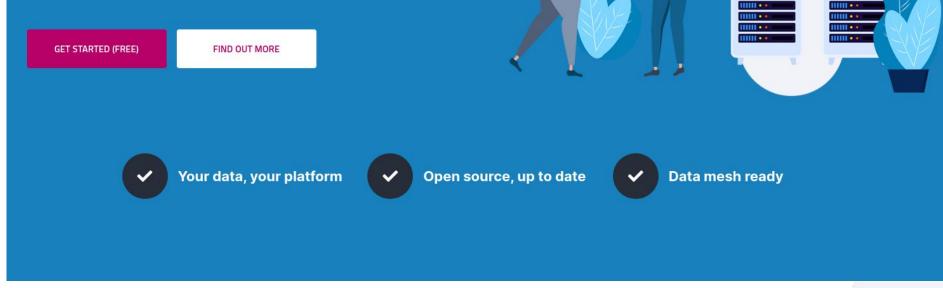
....

III • • -

.....

.....

111111 • •


Stackable

.....

....

The modular open source data platform

Popular data apps. K8s-native. Easy to deploy and run.

.

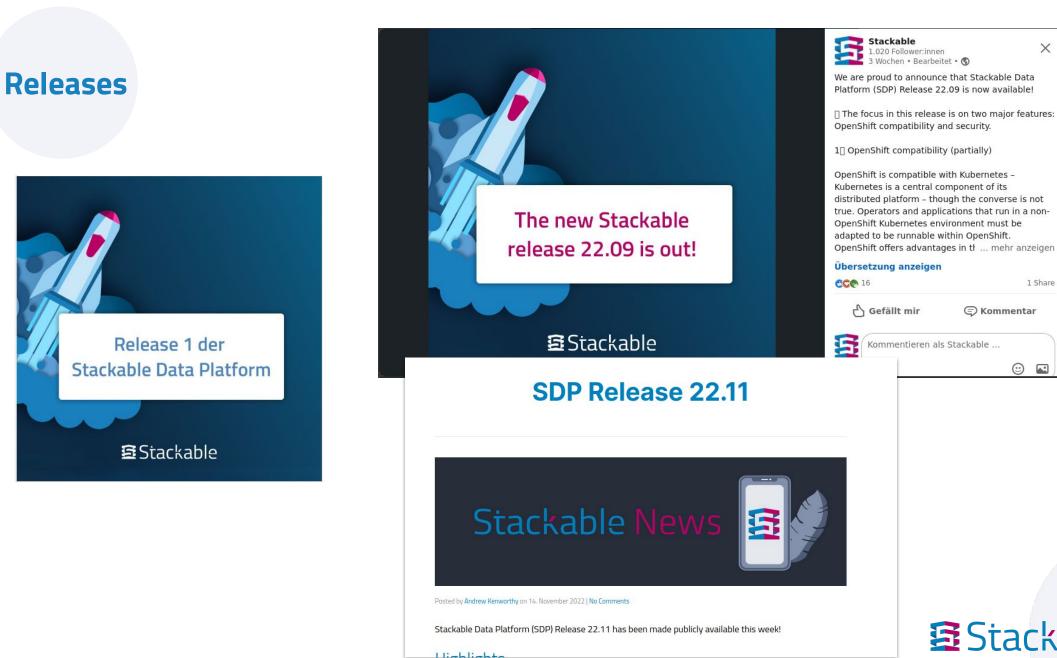
11111

1111 • •

111 • •

_

Documentation


HOME GETTI	NG STARTED	CONCEPTS	TUTORIALS	STACKABLECTL	OPERATORS	CONTRIBUTE					
Stackable Operator for Apache Druid		යි Stac	kable Operator f	or Apache Druid							
	nightly										
Getting started	0.6										
Configuration	0.2	C+-	Stackable Operator for Apache Druid								
Usage	0.1	SLa	ICKADIE	operator	TOT APA	iche Druid					
Concepts											
		This is	This is an operator for Kubernetes that can manage Apache Druid clusters.								

Supported Versions

The Stackable Operator for Apache Druid currently supports the following versions of Druid:

- 0.22.1
- 0.23.0

Stackable Stackable

X

1 Share

· 🕰

C Kommentar

Looking Back at Releases 22.06, 22.09 & 22.11

- stackablectl
- LDAP support for tools that support it
 - Druid
 - NiFi
 - \circ Airflow
- Extended OpenShift support for our operators
- Kafka TLS support with secret operator
- TrinoCatalogs
- Demos!
- Updated product versions
- Resource management
- HBase Phoenix support

Demos

stackablectl

Demos (Workloads)

Stacks (Architecture)

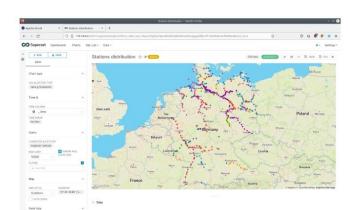
Releases (Stackable Operators)

Current Demos (a selection)

DEMO: DATA-LAKEHOUSE-ICEBERG-TRINO-SPARK

Data Lakehouse technology showcase

This technology demo showcases some of Stackable's latest release 22.11 features.


- The demo contains elements of previous demos i.e
- real-time event streaming with Apache NiFi
- Trino for SQL access and
- visual data display and analysis with Apache Superset

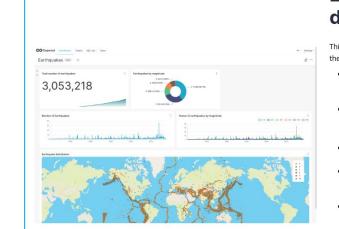
But, adding to this, the demo also includes new lakehouse features such as the integration with Apache Iceberg providing e.g. transactional consistency and full schema evolution.

The result is a powerful blueprint for a modern data stack with the Stackable Data Platform.

- Other highlights of the demos
- Apache Spark: A multi-language engine for executing data engineering, data science, and machine learning. This demo uses it to stream data from Kafka into the lakehouse.
- Open policy agent (OPA): An open source, general-purpose policy engine that unifies policy enforcement across the stack. This demo uses it as the authorizer for Trino, which decides which user is able to query which data.

TUTORIAI

Real-time display of water levels


Low water or danger of flooding – the water levels of our rivers have moved into the public interest in times of climate change.

Our Stackable Data Platform demo shows the water levels of rivers in near real-time for Germany based on data from Pegel Online.

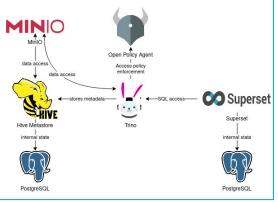
Several components of the Stackable Data Platform play together without requiring much configuration effort:

Apache Nifi and Kafka are used to fetch water level measurements from gauging stations distributed across Germany via an API from Pegel Online and store them in Apache Druid.

Druid is a scalable real-time database that can be queried using SQL. This method is used in the demo to query gauge levels via Apache Superset and visualize them in the dashboard. For permanent storage, Druid requires a so-called "deep storage", which is implemented in our example via MinIO as an S3-compatible object store, as it is available in most public and private cloud environments.

Event streaming of earthquake data

This Stackable Data Platform demo shows streamed earthquake data end-to-end up to the dashboard. It includes the following operators:


- Superset: a modern platform for data exploration and visualization. This demo uses Superset to retrieve data from Druid via SQL queries and build dashboards on that data.
- Kafka: A distributed event streaming platform for high-performance data pipelines, streaming analytics, and data integration. In this demo, Kafka is used as an event streaming platform to stream data in near real-time.
- Nifi: An easy-to-use, powerful system to process and distribute data. This demos uses it to fetch earthquake-data from the internet and ingest it into Kafka.
- Druid: A real-time database to support modern analytics applications. This demo uses Druid to ingest and store data in near real-time from Kafka and provide access to the data via SQL.
- MinIO: An S3-compatible object store. In this demo, it is used as persistent storage for Druid to store all streamed data.

Stackable 5

Analysis with a data lake

This Stackable Data Platform demo shows data stored in S3 for analysis up to display in the dashboard. Our Stackable operators are used to configure and roll out various components. In particular, this example shows how role-based data access can be implemented using the Open Policy Agent:

- MinIO, an S3-compatible object store, persistently stores the data for this demo.
- Hive-Metastore stores the metadata necessary to make the sample data accessible via SQL and is used by Trino in our example.
- Trino is our extremely fast, distributed SQL query engine for Big Data analytics that can be used to explore data spaces and that we use in the demo to provide SQL access to the data.
- Finally, Apache Superset we use to retrieve data from Trino via SQL queries and build dashboards on that data.
- Open Policy Agent (OPA): an open source, universal policy engine that unifies policy enforcement across the stack. In this demo, OPA authorizes which user can query which data.

PEGELSONLINE

city, parg

MINIC

SOL SUDERSET

🖧 kafka

ICEBERG

IEUE MOBILITĂ

Release 22.11

Stackable Release 2022-11

Planned release date is: 2022-11-11

Release process

We will use a release branch for this release. The process can be summarized as follows:

Overview

- · Development in short-lived feature branches with PRs merged to main (current practice)
- A release branch is created from main per minor version (e.g. 4.2.x)
- · This branch is used for testing and verifying, with fixes being made in main and then cherry-picked to the release branch
- · When the release branch is tested and ready, it is tagged and remains open for any subsequent bug fixing etc.

Process steps

🗆 initiate the release process by creating a release branch e.g. 4.2.x and replace "nightly" etc. (as the current release script does)

□ the docs version is also set, but in antora still marked as prerelease=true

conduct a non-formal feature freeze (not technically necessary but not a bad idea either). This branch is now the releasecandidate-branch, where tests are made, demos verified etc.

- test and make changes to code and docs in main and then cherry-picked into the release branch
- when testing is complete, tag the release branch
- □ the docs can now be marked as prerelease=false
- □ during the release process, document and plan what can be automated for future releases

Further bug-fixes follow the same pattern (made in main, cherry-picked, release branch re-tagged) A platform release is then defined by the individually released operators at the time of the release plus the stackablectl releases.yaml.

Release checklists

Beginning of the release cycle

O Epic: Update products to latest versions #260

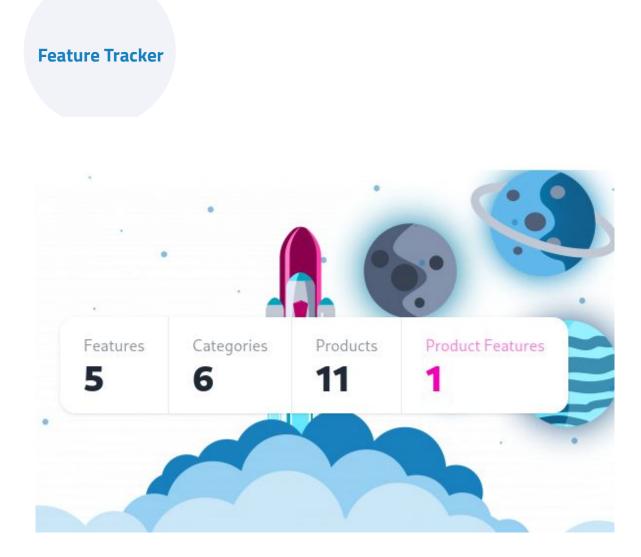
Bump Rust version

Before feature freeze

Bump operator-rs to latest version in all operators

Release 22.11

- Iceberg Support in Trino
- Full restart Support for NiFi
- Restart Operator
- More OpenShift Compatibility
- Many many many smaller things

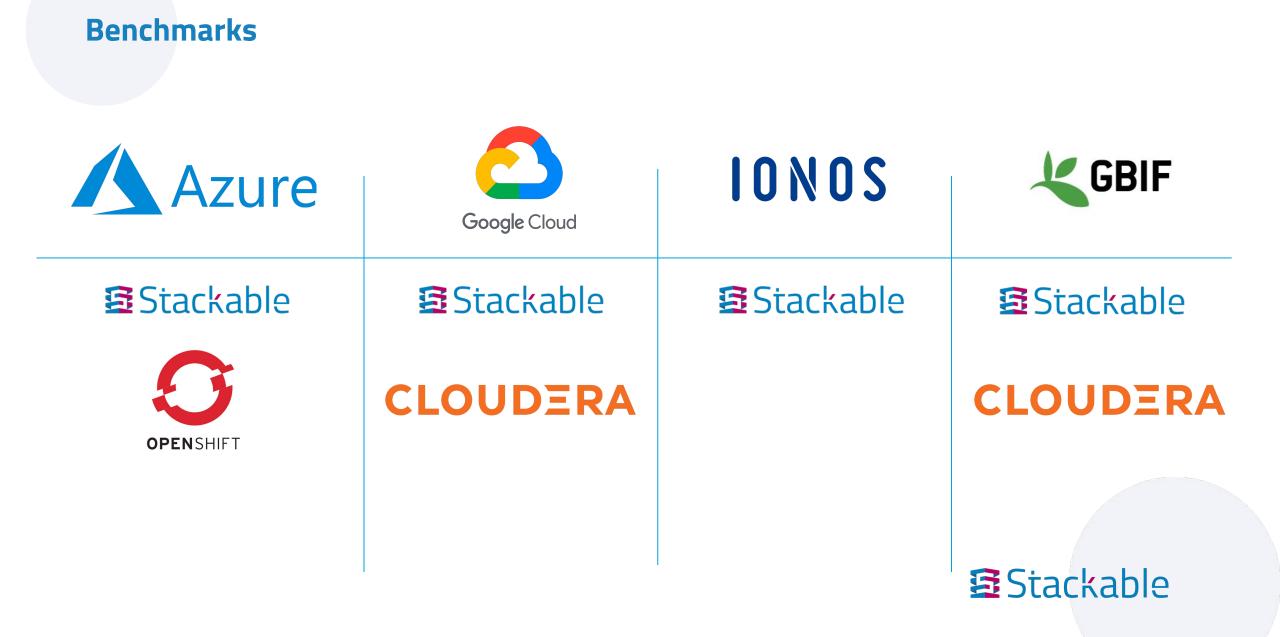


Release 23.01

Focus Topics

- Authentication & Authorization
- Monitoring & Log Aggregation
- New demo
- OpenShift
- Product Image specification (i.e. "offline" support)

GBIF Global Biodiversity Information Facility



Benchmarks

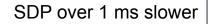
We ran some benchmarks!

* Blog post with numbers and exact commands upcoming

Benchmark Environment

- GKE 1.23.8
- Machine Type: C2 Standard 8 (see table)
- 16 Nodes (3 Master, 13 Worker)
- SDP 2022.11 / CDH 6.3.4

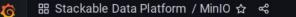
	Google (c2-standard-8)
CPU	8 (VCPU)
RAM	32 GB
Storage	1 Drive*


"*" More hard drives just share the available bandwidth according to the docs

Kubernetes vs. "Bare Metal"

ms (rounded)	Workload A 50% Read / 50% Update		Workload B 95% Read / 5% Update		Workload C 100% Read		Workload D 95% Read/ 5% Insert		Workload E 5% Insert / 95% Scan		Workload F 50% Read / 50% Read Modify Write	
	CDH	SDP	CDH	SDP	CDH	SDP	CDH	SDP	CDH	SDP	CDH	SDP
Teil 1: Average Latency	1	1	0	0	0	0	0	0	5	5	1	1
Teil 1: 95 Percentile	1	1	1	1	1	1	1	1	10	17	1	1
Teil 1: 99 Percentile	4	4	4	3	3	3	3	4	17	27	4	3
Teil 2: Average Latency	1	1	1	1	n/a	n/a	1	1	5	6	1	1
Teil 2: 95 Percentile	1	1	1	1	n/a	n/a	1	1	11	17	2	3
Teil 2: 99 Percentile	6	4	5	4	n/a	n/a	5	4	18	27	3	6

SDP as fast or faster than CDH


Stackable

nhite

Office Hours

Next Office Hours: 27.1.2023

Follow us

https://www.linkedin.com/company/stackabletech/

https://twitter.com/stackabletech

https://github.com/stackabletech

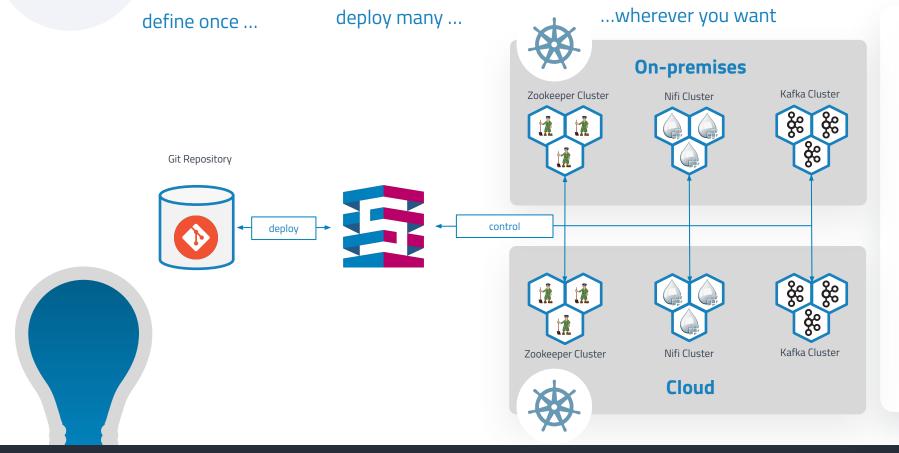
https://www.xing.com/pages/stackable

Coming soon! (https://slack.stackable.de)

Subscribe to our newsletter: <u>https://newsletter.stackable.tech/</u>

25

0


-

Lars Francke lars.francke@stackable.tech +49 172 4554978

Thank you

Define your Data Platform as Code

Stackable Data Platform:

A comprehensive set of software components playing together to

- deploy,
- manage,
- monitor,
- update and
- secure

up-to-date open source products using a 100% Infrastructure-as-Code approach

